INFERENCE FOR THE BINOMIAL N PARAlVIETER : A BAYES ElVIPIRICAL BAYES APPROACH

نویسنده

  • Adrian E. Raftery
چکیده

The problem of inference about the binomial N parameter is considered. Applications arise in situations where an unknown population size is to be estimated. Previous work has focused on point estimation, but many applications require interval estimation, prediction, and decision-making. A Bayes empirical Bayes approach is presented. This provides a simple and flexible way of specifying prior information, and also allows a convenient representation of vague prior knowledge. It yields solutions to the problems of interval estimation, prediction, and decision-making, as well as that of point estimation. The Bayes estimator compares favorably with the best, previously proposed, point estimators in the literature. The Bayesian estimation interval which corresponds to a vague prior distribution also performs satisfactorily when used as a frequentist confidence interval. Adrian E. Raftery is Associate Professor of Statistics and Sociology, University of Washington, Seattle, WA 98195. This work: was supported by ONR contract NOOO14-84-C-0169. I am grateful to W.S. Jewell for helpful discussions, and to George Casella, Peter Guttorp, n.v. Lindley, John Charles E. Smith, J. and Turet for comments on an earlier

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Statistical Inference for the Lomax Distribution under Progressively Type-II Censoring with Binomial Removal

This paper considers parameter estimations in Lomax distribution under progressive type-II censoring with random removals, assuming that the number of units removed at each failure time has a binomial distribution. The maximum likelihood estimators (MLEs) are derived using the expectation-maximization (EM) algorithm. The Bayes estimates of the parameters are obtained using both the squared erro...

متن کامل

Empirical Bayes Estimators with Uncertainty Measures for NEF-QVF Populations

The paper proposes empirical Bayes (EB) estimators for simultaneous estimation of means in the natural exponential family (NEF) with quadratic variance functions (QVF) models. Morris (1982, 1983a) characterized the NEF-QVF distributions which include among others the binomial, Poisson and normal distributions. In addition to the EB estimators, we provide approximations to the MSE’s of t...

متن کامل

Minimax Estimator of a Lower Bounded Parameter of a Discrete Distribution under a Squared Log Error Loss Function

The problem of estimating the parameter ?, when it is restricted to an interval of the form , in a class of discrete distributions, including Binomial Negative Binomial discrete Weibull and etc., is considered. We give necessary and sufficient conditions for which the Bayes estimator of with respect to a two points boundary supported prior is minimax under squared log error loss function....

متن کامل

Bayes Estimation for a Simple Step-stress Model with Type-I Censored Data from the Geometric Distribution

This paper focuses on a Bayes inference model for a simple step-stress life test using Type-I censored sample in a discrete set-up. Assuming the failure times at each stress level are geometrically distributed, the Bayes estimation problem of the parameters of interest is investigated in the both of point and interval approaches. To derive the Bayesian point estimators, some various balanced lo...

متن کامل

Inference for the Proportional Hazards Family under Progressive Type-II Censoring

In this paper, the well-known proportional hazards model which includes several well-known lifetime distributions such as exponential,Pareto, Lomax, Burr type XII, and so on is considered. With both Bayesian and non-Bayesian approaches , we consider the estimation of parameters of interest based on progressively Type-II right censored samples. The Bayes estimates are obtained based on symmetric...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1986